TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 1
 » Hybrid Cloud Delivery ... 2
 • Cloud Administration Portal ... 3
 • Service Blueprints .. 3
 • Service Catalog ... 5
 • My Cloud Services Portal .. 6
 • Change Management .. 8
 • Service Governor ... 8
 » Resource Management ... 9
 • Compute Resources ... 9
 • Storage ... 9
 • Applications .. 9
 • Network Containers ... 10
 • External Resources .. 10
 » Service Decommissioning .. 10
 » Beyond Provisioning .. 11
 • Monitoring ... 11
 • Compliance .. 11
 • Ensuring Scalability .. 11

KEY DIFFERENTIATORS .. 12
 • Flexible Service Design and Provisioning ... 12
 • Policy-Based Service Governor ... 12
 • Secure Multi-tenancy Support ... 12
 • Open, Heterogeneous Design ... 13
 • Integrated Operating Model ... 13

SUMMARY ... 14
EXECUTIVE SUMMARY

Cloud computing has the potential to dramatically transform IT, increasing IT responsiveness to business needs, while simultaneously driving down the cost of infrastructure, platforms, and applications. At the same time, the very nature of operating a cloud environment has the potential to increase IT scale and complexity. More virtual machines, more dependencies, and a rapidly changing, dynamic infrastructure all compound infrastructure management requirements. IT organizations must make key decisions about supported platforms, degrees of flexibility, and scalability using a unified management strategy.

The answer lies in deploying a single, unified platform that can successfully manage your entire cloud lifecycle across both internal and external cloud resources — from request, through self-service provisioning, to maintenance, and decommissioning. The lifecycle should have the ability to be tailored to the needs of the business, with the flexibility to deliver user-configured, multi-tiered, cloud services and the management rigor to ensure the operational integrity of the cloud, from request to retirement. It should also employ a policy-driven provisioning process through a self-service portal supported by a service catalog. With cloud lifecycle management in place, IT can achieve the fundamental goals of a cloud environment: agility, cost savings, and a more optimized use of resources.

Many organizations approaching cloud computing today have already had some experience implementing virtualization in their data centers. By extending the traditional virtualized environment, BMC Cloud Lifecycle Management delivers an operational model for the lifecycle of cloud services and the utilization of public clouds in a hybrid model. Every resource in the environment goes through a lifecycle that, when defined and appropriately automated, provides a seamless and predictable cloud for both IT and the business.

BMC Cloud Lifecycle Management provides:

» Easy-to-use cloud administration and user self-service portal
» Flexible service design and provisioning with Service Blueprints
» Intelligent policy-based placement and ongoing operations with the industry’s first Service Governor
» Secure multi-tenancy based on deep network integrations
» Ongoing operations with integrated ITIL processes, including performance and capacity management
» Support for heterogeneity, including physical, virtual, multi-hypervisor, public cloud integrations, and more

BMC Cloud Lifecycle Management is the culmination of years of experience in IT management and automation. It’s been designed to leverage the best practices of your physical data center environments and ensure that those best practices are appropriately applied to cloud-based services. With a single management platform ensuring continuity between both environments, your private cloud can be enterprise-class from the start.
HYBRID CLOUD DELIVERY

The goal of hybrid cloud delivery is to manage the dynamic nature of the cloud environment to accelerate provisioning, facilitate flexibility, and rapidly meet the needs of the business. With the BMC Cloud Lifecycle Management solution, your organization can deliver flexible, customizable cloud services, while also maintaining a structured, controlled, and dynamic IT environment.

Initial decisions around cloud lifecycle management will help lay the foundation for the technology decisions going forward, ensuring that the environment is flexible enough to address anticipated areas of growth in the future.

BMC Cloud Lifecycle Management will help you:

» Meet business needs by providing flexible cloud service offerings
» Improve availability by delivering efficient single and multi-tier cloud services
» Optimize costs through intelligent, policy-driven placement of cloud services
» Improve availability by ensuring broad resource support for physical and virtual environments, as well as private and public clouds.

Figure 1. The stages of hybrid cloud delivery

Figure 1 represents the various stages of hybrid cloud delivery, as follows:

The administrator (top left) uses the administrative portal to design a set of cloud services using the Service Blueprint construct described below.

The administrator then translates that Service Blueprint into a Service Offering, which abstracts and labels the technical definition of the service in business language that is pertinent to each user, according to their role.

The user (top right) accesses the service offerings through the user My Cloud Services Portal. He completes a service request, which can involve configuring the cloud service according to parameters defined in the Service Blueprint.
The request then flows to the Service Governor, a policy-engine that takes into account the Service Blueprint associated with the request, information about the user, compliance rules, and other factors to determine where to place the cloud service. The Service Governor leverages these configurable policies to make both the initial placement decision and ongoing management choices for the cloud service.

The cloud service is also mapped to the central CMDB in order to maintain a central source of truth in the environment.

Finally, to actually gather the resources, the Service Governor calls the resource management layer, which acts as an interface to all underlying cloud resources, including external public cloud services.

Cloud Administration Portal

![Image of BMC Cloud Lifecycle Management Administration Portal]

Figure 2. The Cloud Administration Portal

The BMC Cloud Lifecycle Management Administration Portal is a browser-based UI, designed to be customizable to the needs of your cloud administrators. It provides access to cloud administrator features through separate workspaces:

- **Dashboards**: View data charts that display cloud usage metrics
- **Service Instances**: Manage all existing cloud services through the service request wizard
- **Service Catalog**: Create service offerings and group service offerings into packages for tenants
- **Service Blueprints**: Create Service Blueprints that are used to fuel service offerings in the service catalog
- **Tenants**: Onboard and manage tenants — and manage tenant access to requestable services
- **Service Governor**: Create intelligent placement policies that determine initial placement and ongoing management of the cloud service
- **Resources**: Onboard and manage both private and public cloud resources, which are used when a service is requested
- **Providers**: Register resource providers, including public clouds, that supply resources for the cloud
- **Configuration**: View configuration options

Service Blueprints

When contractors build houses, they use blueprints designed by an architect to guide them. In the same way, Service Blueprints enable you to design, manage, and build all of the underlying components, operations, and resource sets that define services.
A Service Blueprints is comprised of three parts:

1. A **functional description** of the different components of the service, including one or more operating systems, application stacks on each, databases, their configurations and the interconnectivity between them.
2. One or more **deployment models**, which can vary in size and source of resources, enabling the same functional description to be deployed as small, large, or horizontally scalable.
3. A set of **user-configurable options** for each service, ranging from backup to compliance to monitoring to different application stacks.

![Diagram of Service Blueprint, Deployment Model, and Service Options]

Figure 3. Components of a Service Blueprint

The Service Blueprint for a small application might have all its components (for example, its web server, application server, and database server) deployed on one virtual machine (VM). But the Service Blueprint for a large application might distribute these components across a mixture of VMs and physical systems (for example, its web server and application server may be on VMs, but its database server may be on a physical Solaris computer). Further, the user-configurable options enable each customization to be automated to meet their needs.

The following attributes are often defined in the Service Blueprints:

- Resource configurations
- Operating systems
- Middleware stacks
- Application alternatives
- Networking options
- Compliance packages
- Monitoring tools
- Service levels
- Prices
- Cost
In order to provide the most flexible service stacks for users, BMC Cloud Lifecycle Management supports an equally flexible underlying provisioning capability. So, every service that is requested is individually provisioned and customized to meet the exact request of the user. Service Blueprints are stored in the centralized BMC Atrium CMDB, ensuring strong integration with the rest of the IT environment.

Traditional virtualization provisioning is image-based, requiring IT to either restrictively standardize on a very small set of images or, alternatively, manage a library of hundreds of unique images. The full-stack provisioning capability of BMC Cloud Lifecycle Management enables a single Service Blueprint to drive hundreds of different customized cloud services with only one core definition. This approach is one of controlled customization, delivering flexibility for the user, within constraints designed by IT.

Service Catalog

In the BMC Cloud Lifecycle Management service catalog, Service Blueprints are translated into service offerings characterized in business terms. At its most basic, a service catalog is a listing of services from which a user can drive the cloud service provisioning process.

Each service offering has attributes that IT defines, including who can see and select this service, what service levels or constraints are important to this service, and how much this service costs, including all internal costs (for calculating chargebacks).

Creating a service catalog has two main goals. First, customers and partners should clearly know what services IT offers and what it does not, all in one place. Second, service models should provide a view of all services offered, including business services. ITIL V3 has raised the importance of service lifecycle management and the need to align IT with business goals.

Rather than design a service catalog starting with the configuration items (CIs), ITIL V3 requires starting with the business service. The service catalog allows you to overcome fragmentation and to provide a more complete view of services:

» Focus on services to generate better business results
» Create a catalog of services in which you manage cost, quality, and value
» Use a common language for IT and businesses to communicate clearly what IT does and does not do

In BMC Cloud Lifecycle Management, the service offerings represent a list of business services that leverage Service Blueprints to deliver the offering. For example, Figure 4 shows that a “Small Pet Store” service offering is available to the user. This offering leverages the “Pet Store” Service Blueprint and the “Small” deployment size. If configuration options were available, the user could select those as well.

The service offerings are presented to users through their own My Cloud Services Portal, in clear business language. Each request is driven by BMC Service Request Management, part of the BMC Remedy IT Service Management Suite, leveraging its centralized service catalog.
My Cloud Services Portal

The most visible user-facing portion of the cloud computing environment is the self-service portal. BMC’s user-friendly portal, the My Cloud Services Portal, guides users through the service request process. The portal gives users a multitude of options from which to select and customize their cloud service to suit their needs. Options are presented based on a user’s role within the organization, and can range from different resource sizes, service tiers, and operating systems through application stacks and higher-level services, such as compliance and monitoring. The options presented are configured by IT through the service catalog, enabling both highly controlled and highly configurable cloud service requests.

The Service Instances pane displays a list of users’ approved service requests, as well as those pending approval. The pane also displays details about these requests, such as the status of the service and the date upon which the service ends.
From the Service Instances pane, you can:

» Request cloud services
» Monitor cloud services
» Manage cloud services

In addition to the Service Instances pane, the My Cloud Services console offers these expandable panes that display additional information about your cloud environment:

» Overview
» Details
» Pending Activity

Figure 6. The Cloud User Request Wizard

From the Service Instances pane, users can launch the request wizard that guides them step by step through the process of requesting a new offering. This includes:

» Selecting the base offering
» Choosing configuration options
» Viewing the associated costs
» Completing request details

Approval for this service follows the change management approval process defined by IT. This process may be fully automated or may require manual approval.

The My Cloud Services self-service portal:

» Provides a web-based interface to enable users to design and provision their own services
» Allows IT to customize the portal to the look and feel of its company or to even create an entirely unique portal by leveraging the Cloud API; the very one used by the native portal
» Establishes the necessary controls to constrain options to an appropriate set for each user
» Enables users to manage existing cloud services, including such actions as adding CPUs or memory
Change Management
In BMC Cloud Lifecycle Management, the various kinds of end-user requests — from a new cloud service request to the extension, modification, and retirement of existing instances to the management actions on existing servers — can all be configured to generate change requests. While one of the hallmark attributes of a cloud environment is rapid fulfilment of requests, such as provisioning new instances, change governance is still a necessity in virtually all enterprise environments.

When requests are submitted by end users in the My Cloud Services Portal, a configuration parameter is checked to determine whether BMC Change Management is enabled. If so, it creates the change request following further configuration parameters. Each offering can be configured for automatic or manual approval. If the latter, the request is fulfilled only upon manual approval.

This allows the IT organization to ensure that change audit trails are provided for the entire infrastructure, even for requests that need to be fulfilled seemingly immediately via pre-approved changes.

Service Governor
In order to properly place a workload, the cloud management solution has to take a policy-based approach to intelligent placement, weighing the different guidelines and making a decision. BMC Cloud Lifecycle Management accomplishes this through a Service Governor, which acts as the intelligent policy-engine for the cloud environment, making both initial placement decisions and performing ongoing management.

Once an end user has submitted a request, the Service Governor determines how it will be fulfilled. The Service Governor uses policies to determine how the set of components defined in the blueprint for a request gets mapped to underlying resources. It provides the automatic selection of compute, network, and storage pools as defined by policy. It also enables cloud administrators to define intelligent placement based on customer-based attributes, such as tenants, service quality, and performance.

A set of tags direct the automated provisioning of resources and the placement of services. Cloud administrators can tag different resources with designations, organizational names, service levels, and more in order to drive the intelligent placement of cloud services. Tags are available for the following BMC Cloud Lifecycle Management objects:

» Network containers
» Compute resource pools
» Virtual disk repository pools
» Tenants
» Service Blueprints

Policies match tags between Service Blueprints and available resources and between tenants and available resources. When a service instance is created based on a Service Blueprint, policies dictate which resources are used for that service instance.

Once provisioned, the service enters its operational phase, where BMC solutions manage the normal day-to-day activities of performance and capacity management, as well as patching and configuration management. That core functionality ensures that capacity and performance information is adequately feeding placement decisions of the Service Governor, which automates cloud operations and lowers administrative burdens by taking a host of inputs and performing the following actions in an automated, configurable, policy-based way:

» Intelligent placement based on configured policies
» Services matched to resources with advanced tagging
» Secure multi-tenancy and multiple security zones within each tenant’s network container
» Ongoing policy-based management throughout the life of the cloud service
RESOURCE MANAGEMENT

BMC Cloud Lifecycle Management uses administrator-defined policies and object tags to help make placement decisions per service instance. The resources needed to deliver the service are then gathered by the resource management layer. Compute resources and software are provisioned by BMC Server Automation, while the network is provisioned and configured by BMC Network Automation, both part of the BMC BladeLogic Automation Suite. Finally, BMC Atrium Orchestrator workflows guide the provisioning of storage and public cloud resources.

Compute Resources

BMC Server Automation automates the resource provisioning for compute resources: physical servers, virtual clusters, virtual hosts, virtual resource pools, and virtual disk repositories. Virtual clusters may include virtual hosts, virtual resource pools, and virtual disk repositories. When onboarded as part of a virtual cluster, the resource appears in the BMC Cloud Lifecycle Management Administration Console as both its own resource and as a detail of its virtual cluster. The cloud administrator selects which resources in BMC Server Automation to onboard to the cloud.

Compute resources are grouped into compute resource pools based on administrative policies. For example, compute resources might be pooled by their service levels (such as Platinum, Gold, and Silver) or by the tenants they are intended to support. Like most underlying resources, compute resources can be tagged with labels that further inform the placement decision of the Service Governor. Compute resources can only be provisioned after they are added to a compute resource pool.

Compute resource pools allow for easier and faster management of the resources in those pools. They also enable cloud administrators to see the overall capacity of the resources in a pool, and whether the pool is suffering from performance degradation from a hardware or software failure.

Storage

Storage resources are critical to the deployment of cloud services, and often comprise the single greatest cost in a cloud environment. Like compute resources, storage resources can be tagged with labels that can inform the placement process. These tags can drive isolation by tenant, by workload type, or even by compliance requirements. Storage integration and provisioning is achieved using BMC Atrium Orchestrator workflows, and supports NetApp storage out of the box, with API integrations for broader platforms.

Applications

Cloud services are more than simply sets of resources and operating systems. Users require full business services, including applications and middleware stacks. IT can choose which cloud services to offer to users and how customizable those services will be.

At one extreme, users can be offered a choice between only two or three non-customizable full-stack configurations. At the other extreme, users can be offered an extensive set of choices for each component, enabling them to fully customize their stack. A common middle-ground approach is for IT to determine which broad offerings should be presented; which elements should be optional and which should be required (like compliance or monitoring); and which users will be presented with which options.

In order to maintain the greatest flexibility in these cloud service offerings, while also ensuring users get the software stack they require, BMC Cloud Lifecycle Management leverages BMC Server Automation, with its layered approach to software provisioning, to rapidly construct the requested cloud service. This approach leverages a single Definitive Media Library of applications, significantly easing the ongoing maintenance and patch management administrative challenge, while also delivering the complete cloud business service to the user.
Network Containers

Network containers enable policy-driven, automated provisioning of secure, multi-tenant environments. They represent an isolated segment of the network for specific tenants or workloads, based on specific policies and rules. Network containers are built from network container blueprints, which define the network container architecture and include definitions for firewalls, routers, load balancers, networks, and zones.

» **Pods** are a physical chunk of the cloud environment, bounded by network equipment. Examples: routers, firewalls, and load balancers.

» **Network Containers** are segments of the pod used to isolate tenants and workloads based on policy. Example: a virtual data center.

» **Network Zones** exist within the network containers, creating separate security zones for different parts of a cloud service. Example: the DMZ or behind the firewall.

BMC Cloud Lifecycle Management supplies out-of-the-box network container blueprints based on cloud network topologies developed jointly with Cisco, and supports the provisioning of these using BMC Network Automation. Additional network providers can also be leveraged using a set of APIs into BMC Cloud Lifecycle Management.

External Resources

An internal cloud may start small, yet the demands of a business might be much higher than anticipated. Similarly, it might not make sense to continue to grow an already large internal cloud to meet occasional demand peaks. Consequently, there are often times when leveraging public cloud resources can make good business sense. More and more workloads can be moved to public clouds, especially low-risk workloads. Public clouds are not only getting more secure, but they are also providing more and more guarantees of their security and service levels.

BMC Cloud Lifecycle Management can be integrated to provide seamless provisioning of cloud resources from public cloud providers, such as Amazon’s EC2. Robust southbound APIs are available for integration with public cloud providers, ensuring freedom of choice of provider. Whether obscured or transparent to the end user, the provisioning of these resources occurs through the same My Cloud Services Portal, and can be managed through the same administrative environment as the private cloud.

SERVICE DECOMMISSIONING

Once provisioned, the service enters its operational phase. BMC solutions manage the normal day-to-day activities of performance, capacity, and configuration compliance. Because the goal of the cloud is to better utilize resources all of the time, service decommissioning or retirement is a very important function, completing the lifecycle.

When a cloud service is requested, a retirement date is assigned to it. Cloud services are typically out-of-sight and thus out-of-mind, so the remnants of past cloud services, if not placed on a termination schedule, will often linger indefinitely. When the retirement date approaches, the system automatically notifies the service owner and IT. The owner and IT can jointly make an intelligent and informed decision about whether to extend the service (via a request sequence) or to decommission it, therefore reclaiming unused disk and CPU resources.
Key decommissioning functionality includes the ability to:

- Schedule, at provisioning, the decommissioning date of a cloud service
- Decommission each service according to a schedule, with the appropriate notification to its owner
- Let users of a cloud service extend that service, or terminate it early, though the self-service portal
- Configure grace periods during which images are unavailable but recoverable

BEYOND PROVISIONING

Monitoring
The BMC Cloud Lifecycle Management solution allows integration to flexible monitoring capabilities. BMC ProactiveNet Performance Management can be activated as an out-of-the-box monitoring solution for cloud environments. The solution can also be configured to deploy or instrument virtually any monitoring and management platform.

The BMC ProactiveNet Performance Management node baselines the performance of any virtual machines provisioned by the BMC Cloud Lifecycle Management solution. It also monitors external public cloud resources, alongside private cloud services, to ensure consistent, unified information is available at all times.

Compliance
IT seeks to optimize the use of resources and assets in the service environment — from servers, networks, and storage to the applications infrastructure and the applications themselves. But IT is also held to audited standards of compliance, security, and governance — by both regulators and the business.

With BMC Cloud Lifecycle Management, policy-driven monitoring of both servers and network devices detects policy violations that then trigger automated remediation and documentation of the event to yield closed-loop compliance management. Compliance is closely maintained with minimum effort and is immediately reportable. BMC has been automating compliance for years with out-of-the-box compliance templates and compliance reporting in both BMC Server Automation and BMC Network Automation, regardless of whether the target is a traditional server or a service instance in a cloud.

Ensuring Scalability
Cloud environments may begin reasonably small, but both the efficiency and the flexibility of the infrastructure will rapidly drive the growth of a cloud. As in the early days of virtualized environments, the ease with which cloud services can be requested and provisioned will increase demand on an IT environment, and thus drive accelerated growth. This growth represents IT’s improved ability to serve the business, but also creates a key consideration in architecting a private cloud: scalability.

The cloud being developed should be designed to scale to many times its initial estimates, and thus the management software used to build that cloud should be ready to support that growth. The BMC Cloud Lifecycle Management solution has been deployed in massive cloud environments with thousands of concurrent multi-tiered applications running as cloud services, being rapidly provisioned and de-provisioned on a daily basis.
KEY DIFFERENTIATORS

Flexible Service Design and Provisioning
BMC has the only solution that enables users to select from a configurable, layered service catalog in their cloud service, while also providing administrative controls. This includes the ability to automatically provision:

- Single or multiple compute instances that can be physical/virtual and private/public
- Application packages that can be used on physical/virtual and private/public server instances
- Sophisticated multi-tiered service offerings
- Network configuration changes deployed with the service (e.g. firewall updates)
- Configuration, compliance, and monitoring services

The benefits are:

- Flexible offerings to meet the needs of the business
- Re-usable components to avoid re-work
- Reduced management (i.e. fewer templates), resulting in less work to manage the cloud on “Day 2” and beyond
- Network changes that are deployed with the server changes as a single service (no sense in automating the server changes if you have to wait for a manual network change).

By automating the layered provisioning according to each user’s request, IT can achieve maximum flexibly while significantly reducing the number of templates that must be managed.

Policy-Based Service Governor
BMC Cloud Lifecycle Management provides rules-based placement and management of cloud services through the Service Governor, which acts as the intelligent policy-engine for the cloud environment. It makes initial placement decisions, performs ongoing management, and provides the capability to define the Service Blueprints and expose them through the service catalog into the user’s My Cloud Services Portal, and ensure that requests are approved according to policy. By enabling highly configurable cloud services to be delivered in scalable, automated manner, BMC Cloud Lifecycle Management ensures that business users are given the cloud services they need.

Secure Multi-tenancy Support
In most organizations, the concept of shared resource pools increases concerns about security, compliance, and proper partitioning of workloads. By leveraging secure multi-tenancy support implemented at the network level through network containers, BMC Cloud Lifecycle Management customers can ensure that though resources might be shared, workloads cannot interact with peer services on the same cloud infrastructure. This enables more co-mingling of workloads, a unified cloud environment supporting multiple lines of business, and greater operational efficiency — without sacrificing security or compliance considerations.
Open, Heterogeneous Design
In the overwhelming majority of large enterprise IT environments, there is a mix of platform types. Prevention of vendor lock-in and protection of long-term business value are key. Yet, many cloud management solutions, developed by platform vendors, support primarily or exclusively their own platforms. BMC is not a hardware or virtualization platform vendor. With a commitment to heterogeneous support, the BMC Cloud Lifecycle Management solution supports a wide range of platforms, including:

- Physical servers
- Virtual environments
- Public cloud services
- Networking hardware
- Storage hardware
- Operating systems
- Applications

BMC’s commitment to heterogeneity even extends within its cloud lifecycle management solution. The BMC Cloud Lifecycle Management solution is architected to allow for non-BMC components, including:

- Customized self-service environments
- Cloud resource providers
- Performance monitoring solutions

BMC believes strongly in enabling customers to avoid vendor lock-in, and has provided — and will continue to provide — solutions that support the heterogeneous data center.

Integrated Operating Model
The dynamic nature of a cloud environment requires close integration with existing IT processes to maintain cloud services. Resources are allocated, modified, and decommissioned on-demand to meet real time business requirements. IT must ensure these services are maintained in accordance with service level agreements (SLAs).

To do so, BMC Cloud Lifecycle Management leverages the best of existing IT processes in your environment, integrating with change management, compliance, performance management, capacity management, and IT business management solutions. While new, dynamic cloud environments do change the nature of IT, there are significant benefits to maintaining strong controls and ITIL processes, though they may be streamlined, in this environment. With an eye towards integration and leveraging investment, BMC Cloud Lifecycle Management enables enterprises to do just that.
SUMMARY
BMC Cloud Lifecycle Management manages the dynamic nature of the cloud environment, accelerating provisioning, facilitating flexibility, and implicitly setting expectations with the business. What’s more, it helps you achieve tangible results while maintaining a structured, controlled — yet still dynamic — IT environment. One key role of cloud computing is to layer on top of virtualization an operational structure that is scalable, delivers consistent service, and addresses the needs of the business, as well as the needs of the technology team.

BMC brings together the benefits of traditional IT management, including operational excellence, automation, and service delivery models, and merges them with the dynamic potential of cloud architectures. BMC Cloud Lifecycle Management delivers an operational model for the lifecycle of private cloud resources and utilization of public clouds in a hybrid model. It provides the foundation for a strong, flexible, and valuable cloud infrastructure that supports IT operations and delivers exceptional service quality to the business.

BUSINESS RUNS ON IT. IT RUNS ON BMC SOFTWARE.
Business thrives when IT runs smarter, faster and stronger. That’s why the most demanding IT organizations in the world rely on BMC Software across distributed, mainframe, virtual and cloud environments. Recognized as the leader in Business Service Management, BMC offers a comprehensive approach and unified platform that helps IT organizations cut cost, reduce risk and drive business profit. For the four fiscal quarters ended March 31, 2011, BMC revenue was approximately $2.1 billion.